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New Challenges

• New challenges

▪ Emerging applications in different domains (scientific 
simulations, machine learning, data analytics, signal 
processing, etc.)

▪ Unprecedented amount of data to be processed under 
strict real-time, power, and trust constraints

• Providing high-performance, scalable, and 
versatile solutions becomes a fundamental 
requirement

February 27th, 2021PPoPP'21 Tutorial



3

More and More Specialization

• Specialization has become a fundamental pillar for the 
design of future high-end computer systems:

▪ In HPC: GP-GPUs, FPGAs,…; 

▪ In Military: ASICs, DSPs, …

▪ Specialized hardware for machine- and deep-learning 
(Tensor Cores, NVDLA, SambaNova, Cerebras,…).

• High level of specialization results in extremely 
heterogeneous systems that are complicated to design, 
test, validate, and program
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Accelerators are only useful if they are accessible…
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Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106
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Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1 

(P100/V100)

IBM Summit
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The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
▪ Programming model and programming model runtime

▪ Abstract low-level architecture details from programmers

▪ Dynamic scheduling of work onto available resources

• Key programming features:
▪ Applications factored into tasks

▪ Asynchronous execution

▪ Devices are managed by the scheduler 

▪ Co-schedule independent applications

▪ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
▪ Scheduling framework

▪ Multiple scheduling algorithms co-exist

▪ Code portability

▪ Resources allocated at the last moment
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Convergence of HPC/AI/Data Analytics

• Scientists express their algorithm with high-level DSLs that provide 
domain-specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code

• Dynamic runtime coordinates access to computing resources and 
data transfers across different applications 

CPU GPU FPGA NVDLA SST Aladdin TLoop

MCL

TFlow OpenMP COMET TACO

App1 App2 App3 Applications

Domain-Specific 

Language

Hardware
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Multi-Process support

• A key distinctive features of MCL is that it supports multi-process, multi-
threaded workloads

▪ Global optimization across the workload

▪ Dynamic resource allocation
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Static Resource Allocation Dynamic Resource Allocation
App 1

App 2

Dev 1 Dev 1Dev 2 Dev 2
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Supported Architectures

MCL works and/or can be integrated with other technologies 
commonly used in HPC, Data analytics, and ML.
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CPU

Intel x86

AMD x86
ARM

RISC-V
IBM POWER

GPU

NIVIDIA

Intel
AMD

ARM

Accelerators

NVDLA

Xilinx FPGA

ModSim

SST

Aladdin
FPGA Emulator

zSim
other
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Throughput for Large Computations
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• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k  tasks

▪ 1024x1024

▪ Compute-bound

Automatic scaling to 8 GPUs ☺

Sub-linear speedup up (6x) 
* Same programming effort, not same hardware (MCL>OCL)
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Throughput for Small Computations
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• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k tasks

▪ 64x64

▪ I/O-boud (CPU-GPU) -> 
most challenging case

Automatic scaling to 8 GPUs ☺

Super-linear speedup GPUs ☺
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Application Composition
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• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ Mix of small and large kernels 
(8 processes)

▪ OpenCL modified for static 
resource allocation

▪ No modification to MCL code

Dynamic resource allocation = 

faster execution ☺

2.5x

Increased resource 

contention due to local 
optimization 

Increased utilization due 

to dynamic load 
balancing ☺

All large All small

* Same hardware, not same programming effort (OCL>MCL)
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Comparison with StarPU
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• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k tasks

▪ 64x64

• Same kernel

• Similar code effort

LOC

OpenCL: 160
StarPU: 120

MCL: 60
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System utilization
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• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 16k tasks

▪ 1024x1024

MCL internal tracing

Full utilization after transient 

phases

Effective dynamic load balancing!



14
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