
Introduction to
MCL

Roberto Gioiosa

Rizwan Ashraf, , Ryan Friese, Lenny Guo

Alok Kamatar, Gokcen Kestor

2

New Challenges

• New challenges

▪ Emerging applications in different domains (scientific
simulations, machine learning, data analytics, signal
processing, etc.)

▪ Unprecedented amount of data to be processed under
strict real-time, power, and trust constraints

• Providing high-performance, scalable, and
versatile solutions becomes a fundamental
requirement

February 27th, 2021PPoPP'21 Tutorial

3

More and More Specialization

• Specialization has become a fundamental pillar for the
design of future high-end computer systems:

▪ In HPC: GP-GPUs, FPGAs,…;

▪ In Military: ASICs, DSPs, …

▪ Specialized hardware for machine- and deep-learning
(Tensor Cores, NVDLA, SambaNova, Cerebras,…).

• High level of specialization results in extremely
heterogeneous systems that are complicated to design,
test, validate, and program

February 27th, 2021PPoPP'21 Tutorial

Accelerators are only useful if they are accessible…

4

Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106

February 27th, 2021PPoPP'21 Tutorial

Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1

(P100/V100)

IBM Summit

5

The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
▪ Programming model and programming model runtime

▪ Abstract low-level architecture details from programmers

▪ Dynamic scheduling of work onto available resources

• Key programming features:
▪ Applications factored into tasks

▪ Asynchronous execution

▪ Devices are managed by the scheduler

▪ Co-schedule independent applications

▪ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
▪ Scheduling framework

▪ Multiple scheduling algorithms co-exist

▪ Code portability

▪ Resources allocated at the last moment

February 27th, 2021PPoPP'21 Tutorial

6

Convergence of HPC/AI/Data Analytics

• Scientists express their algorithm with high-level DSLs that provide
domain-specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code

• Dynamic runtime coordinates access to computing resources and
data transfers across different applications

CPU GPU FPGA NVDLA SST Aladdin TLoop

MCL

TFlow OpenMP COMET TACO

App1 App2 App3 Applications

Domain-Specific

Language

Hardware

February 27th, 2021PPoPP'21 Tutorial

7

Multi-Process support

• A key distinctive features of MCL is that it supports multi-process, multi-
threaded workloads

▪ Global optimization across the workload

▪ Dynamic resource allocation

February 27th, 2021PPoPP'21 Tutorial

Static Resource Allocation Dynamic Resource Allocation
App 1

App 2

Dev 1 Dev 1Dev 2 Dev 2

8

Supported Architectures

MCL works and/or can be integrated with other technologies
commonly used in HPC, Data analytics, and ML.

February 27th, 2021PPoPP'21 Tutorial

CPU

Intel x86

AMD x86
ARM

RISC-V
IBM POWER

GPU

NIVIDIA

Intel
AMD

ARM

Accelerators

NVDLA

Xilinx FPGA

ModSim

SST

Aladdin
FPGA Emulator

zSim
other

9

Throughput for Large Computations

February 27th, 2021PPoPP'21 Tutorial

• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k tasks

▪ 1024x1024

▪ Compute-bound

Automatic scaling to 8 GPUs ☺

Sub-linear speedup up (6x)
* Same programming effort, not same hardware (MCL>OCL)

10

Throughput for Small Computations

February 27th, 2021PPoPP'21 Tutorial

• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k tasks

▪ 64x64

▪ I/O-boud (CPU-GPU) ->
most challenging case

Automatic scaling to 8 GPUs ☺

Super-linear speedup GPUs ☺

11

Application Composition

February 27th, 2021PPoPP'21 Tutorial

• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ Mix of small and large kernels
(8 processes)

▪ OpenCL modified for static
resource allocation

▪ No modification to MCL code

Dynamic resource allocation =

faster execution ☺

2.5x

Increased resource

contention due to local
optimization

Increased utilization due

to dynamic load
balancing ☺

All large All small

* Same hardware, not same programming effort (OCL>MCL)

12

Comparison with StarPU

February 27th, 2021PPoPP'21 Tutorial

• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 64-8k tasks

▪ 64x64

• Same kernel

• Similar code effort

LOC

OpenCL: 160
StarPU: 120

MCL: 60

13

System utilization

February 27th, 2021PPoPP'21 Tutorial

• DGX-1 V100

▪ 2x 20-core Intel Xeon

▪ 256 GB RAM

▪ 8x NVIDIA V100, 16GB

• Benchmark:

▪ DGEMM kernel

▪ 16k tasks

▪ 1024x1024

MCL internal tracing

Full utilization after transient

phases

Effective dynamic load balancing!

14

Publications

February 27th, 2021PPoPP'21 Tutorial

1. R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati. 2020. The Minos Computing Library: Efficient
Parallel Programming for Extremely Heterogeneous Systems. In General Purpose Processing Using GPU
(GPGPU ’20), February 23, 2020, San Diego, CA, USA

2. G. Kestor, R. Gioiosa, M. Raugas. Towards Performance Portability through an Integrated Programming
Eco-System for Tensor Algebra. In Performance, Portability, and Productivity in HPC Forum, Virtual,
September 2020

3. A. V. Kamatar, R. D. Friese and R. Gioiosa, "Locality-Aware Scheduling for Scalable Heterogeneous
Environments," 2020 IEEE/ACM International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS), GA, USA, 2020

Thank you

15PPoPP'21 Tutorial

