
MCL Multi-GPU
Support +

Schedulers

Alok Kamatar, Ryan Friese, Roberto Gioiosa

PPoPP ‘21

2

Use Cases

• Translating OpenCL code from one device to multiple:

For dev in devs:

clCreateContext ...

clCreateProgramWithSrc ...

clCreateCommandQueueWithProps ..

clCreateKernel ...

//Create a buffer for each array

//etc.

• Lots of complexity

overhead for each device
• Coordinate which devices

are busy and idle
• Coordinate memory

between devices

3

Use Cases

• Translating MCL Code from single device to multiple devices

mcl_exec(task, pes, block_size, MCL_TASK_GPU);
• Same code runs on all

available resources

• MCL takes care of and

hides complexity
overheadmcl_exec(task, pes, block_size, MCL_TASK_GPU);

4

Example – Easy Scaling

5

Commands used for DGX-1 demo 1

Running Commands

• To replicate the results in
the video, you can run
these commands on your
own GPU enabled
system

6

MCL Schedulers

• MCL scheduler is a separate process that determines where and when tasks
are run

• Flexible – i.e. different scheduler policies divided into too classes

▪ First In First Out – The first task in the queue must be scheduled first,

▪ FFFS scheduler – Allows the resource scheduler to select and of the currently
enqueued tasks

• Different Policies

▪ First Fit

▪ Round Robbin

▪ Delay Scheduler

▪ Hybrid Scheduler

7

First Fit Scheduler

• Schedules the next available task onto the current device if there is space

• Only moves onto the next device if the current device is full

• Space is determined by both memory and available processing threads

• Low Overhead

8

To Run First Fit
Scheduler with
Trace

9

10

First Fit Scheduler Results

DGEMM Benchmark:

• 64 X 64 matrices
• 1024 tasks

Nvidia DGX-1 System:

• 2 Intel Xeon CPUs
• 8 Nvidia Pascal GPUS

• 256 GB memory + 16 GB per
GPU memory

0

0.5

1

1.5

2

2.5

First Fit OpenCL

S
p
e
e
d
 U

p
 (

vs
.

O
p
e
n
C

L
)

MCL Scheduler Comparison

11

Scheduler Trace

• MCL scheduler trace can be enable by compiling with —enable-trace

• Allows us to visualize memory use, processing element use, and number of
busy tasks on each device

• Where are the rest of the GPUS?

▪ Some GPUs are heavily utilized; rest of the GPUs are under utilized

12

Round Robin Scheduler

• Schedules tasks to devices in a circular manner

• Maintains a queue of devices.

▪ Each incoming task gets assigned to the next device in the queue that is compatible

▪ That device is moved to the back of the queue

• Typically achieves good full-system utilization

13

Round Robin GEMM Demo

14

Round Robin Scheduler Results

DGEMM Benchmark:

• 64 X 64 matrices
• 1024 tasks

Nvidia DGX-1 System:

• 2 Intel Xeon CPUs
• 8 Nvidia Pascal GPUS

• 256 GB memory + 16 GB per
GPU memory

0

1

2

3

4

5

6

7

First Fit Round Robin OpenCL

S
p
e

e
d
 U

p
 (

v
s
.
O

p
e

n
C

L
)

MCL Scheduler Comparison

15

Round Robin vs. First Fit

The load that is just on GPU 0 in the First Fit

scheduler is now balanced

16

Another Problem

• Breadth First Search

▪ Graph is represented in two arrays: one storing an adjacency list, one storing the
offsets of each vertex – read only data structure

▪ On each iteration i:

✓ The frontier has an array of vertices that distance I from the source

✓ The cost array has best known cost for each vertex

✓ “Explore” indices that are i+1 away from the source using the frontier array

• Each iteration is a new task reusing the same data from the previous tasks

• Memory transfers dominate compared to computation

17

Breadth First Search

• Breadth First Search Code per iterations:

mcl_handle* hdl = mcl_task_create();

mcl_task_set_kernel(hdl, kernel_path, "BFS", 8, "", 0x0);

mcl_task_set_arg(hdl, 0, (void*)frontier, ..., flags);

mcl_task_set_arg(hdl, 1, (void*)edge_offsets, ..., flags);

mcl_task_set_arg(hdl, 2, (void*)edge_list, ..., flags);

...

mcl_task_set_arg(hdl, 6, (void*)&iters, sizeof(uint32_t), MCL_ARG_SCALAR);

mcl_exec(hdl, pes, lsize, MCL_TASK_ANY);

18

Running Breadth First Search

19

Breadth Fist Scheduler v1

Why so slow?

• Graph is naively transferred for

each iteration

0

0.2

0.4

0.6

0.8

1

1.2

MCL OpenCL

MCL Performance vs. OpenCL

20

MCL Resident Memory Module

• Allows persistent data to remain in
device memory across tasks

• Orchestrates data movement so
correct data is transferred to the
correct device

• Supports read-only (i.e., multiple
copies) and read-write data
(exclusive copies)

MCL_ARG_RESIDENT

MCL_ARG_INVALID

MCL_ARG_DONE

21

Code Modification Demo

• Show (live?) modifications from non-resident memory to resident memory.

• If you are following along in the code, this is the difference between BFS.cpp
and BFS-modified.cpp

22

Running The New Code

0

0.2

0.4

0.6

0.8

1

1.2

Round-Robin OpenCL

S
p

e
e
d

-u
p

 O
ve

r
O

p
e
n

C
L

SHOC BFS Benchmark

23

Breadth First Search v2

Still so slow?

• Different frontiers must be transferred from
other devices

24

Locality Aware Scheduler: Delay Scheduling

• Scheduler needs to choose the optimal
device based off where resident memory
is located

• Delay Scheduling:

▪ Delays kernels from running on devices
without device local data to minimize data
transfers

▪ Skips devices that do not have device local
data, skips tasks when waiting for busy
devices

▪ Limits the number of times a task can be
delayed to prevent a task from blocking too
long

▪ “Local data” is required data that is
currently on a device

25

Locality Aware Scheduler: Delay Scheduling

MCL TaskMCL TaskMCL TaskMCL Task

Ready Tasks

head of queue

Task Memory

Buffer Device Uses

1 1 7

2 2,3 1

MCL Task
Task Mem < Dev

Available Mem &&

task threads < Dev

available threads

Local Data(t, dev)

== Maximum Local
Data

Scheduled Task

on Device

Attempts > Max

Attempts ?

Increment Task

Attempts

Devs Tried

< Num

Devs

Skip Task

Go to next device

Yes

Yes

Yes

Yes Potential for Hot-Spot

Creation

26

Delay Scheduler Results

Performance Improves! But can

we do better...?
MCL scheduler trace reveals that

one device is heavily used

0

0.5

1

1.5

2

2.5

Round-Robin Delay OpenCL

S
p
e

e
d
u
p
 o

v
e

r
O

p
e

n
C

L

SHOC BFS Benchmark

27

Hybrid Scheduler

• Needed to balance locality
concerns against system
utilization=

• Detects popular pieces of data to
create replicas – done by
changing how we calculate local
data

• Hyperparameters are controlled
with environment variables:
MCL_SCHED_MAX_ATTEMPTS
and
MCL_SCHED_COPY_FACTOR

28

BFS – Final Version Demo

29

Breadth First Search Results

Best performance!
MCL scheduler trace reveals

balance among first 4 devices

0

0.5

1

1.5

2

2.5

3

3.5

4

Round-Robin Delay Mixed OpenCL

S
p
e

e
d
u
p
 O

v
e

r
O

p
e

n
C

L

SHOC BFS Benchmark

30

Effect of Hyperparameters on Performance

BFS

Benchmark
- 1,000,000

vertices
- 4096 Tasks

If Max Attempts > Num

Devices – copy factor
dominates performance

When Max Attempts <

Num Devices – low
performance

0

50

100

150

200

250

300

2 4 8 16 32

B
F

S
 M

T
E

P
S

Max Attempts

Copy Factor 2 Copy Factor 4 Copy Factor 8 Copy Factor 16

Num

GPUs

31

Full Scheduler Comparison

32

Writing Your Own Scheduler

• Certain applications require specific requirements from the scheduler

• init(mcl_resource_t* r, int ndevs) – initialize representation of
resource and any other representation needed

• find_resource(sched_req_t r)– Find the device r should run on. Also,
set r->dev to the assigned device

• assign_resource (sched_req_t r) – Allocate resources in resource to
the scheduled device

• assign_resource (sched_req_t r) – Release resources in resource
model from scheduled device

33

Eviction Policy

• Memory Usage is a limited resource that is under demand in a HPC system

• MCL supports flexible eviction policies that can be combined with scheduler
policies

• When applications are unable to be run because no device has enough
available memory, resident data can be evicted back to main memory

• To the user, MCL still behaves the same

• Currently supports a LRU policy

34

Upcoming Work – Multi-Application Scheduling

• Different applications needs to be run in a pipeline

▪ A physics simulation -> a data analysis application to detect events

▪ A MD-simulation guided by reinforcement learning

▪ Combustion Simulation + Machine Learning

▪ Etc.

• Currently in 2 ways:

▪ Modify exiting application -> specific to each application, lots of extra work,

▪ Leverage Files

35

Shared Memory Design

• Leverage POCL to create an additional OpenCL interface that allows buffers
to be shared

• Scheduler is aware of where necessary data is even across applications

• The same data does not have to transferred again in different applications

• Patterns Supported:

▪ Scratch Pad

▪ Producer-Consumer

▪ Circular Buffer

36

Pipelining Applications Code

• Experimental Application

▪ Producer performs an arbitrary number of floating-point operations on a buffer

▪ Consumer reads producers buffer and performs its own operations

• Comparisons:

▪ MCL Shared memory

▪ OpenCL – File

▪ OpenCL – POSIX Shared Mem + Pipe (Statically Partitioned GPUs)

37

Pipelined Applications (Example)

Thank you

38

