
Introduction to
MCL

Roberto Gioiosa
Rizwan Ashraf, , Ryan Friese, Lenny Guo

Alok Kamatar, Gokcen Kestor

2

New Challenges

• New challenges
§ Emerging applications in different domains (scientific

simulations, machine learning, data analytics, signal
processing, etc.)

§ Unprecedented amount of data to be processed under
strict real-time, power, and trust constraints

• Providing high-performance, scalable, and
versatile solutions becomes a fundamental
requirement

April 2nd, 2022PPoPP'22 Tutorial

3

More and More Specialization

• Specialization has become a fundamental pillar for the
design of future high-end computer systems:
§ In HPC: GP-GPUs, FPGAs,…;
§ In Military: ASICs, DSPs, …
§ Specialized hardware for machine- and deep-learning

(Tensor Cores, NVDLA, SambaNova, Cerebras,…).

• High level of specialization results in extremely
heterogeneous systems that are complicated to design,
test, validate, and program

April 2nd, 2022PPoPP'22 Tutorial

Accelerators are only useful if they are accessible…

4

A Little History…

Time

We need a reasonable path to migrate
applications to novel architectures!

April 2nd, 2022PPoPP'22 Tutorial

5

Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106

April 2nd, 2022PPoPP'22 Tutorial

Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1

(P100/V100)

IBM Summit

6

The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
§ Programming model and programming model runtime
§ Abstract low-level architecture details from programmers
§ Dynamic scheduling of work onto available resources

• Key programming features:
§ Applications factored into tasks
§ Asynchronous execution
§ Devices are managed by the scheduler
§ Co-schedule independent applications
§ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
§ Scheduling framework
§ Multiple scheduling algorithms co-exist
§ Code portability
§ Resources allocated at the last moment

April 2nd, 2022PPoPP'22 Tutorial

7

Convergence of HPC/AI/Data Analytics

• Scientists express their algorithm with high-level DSLs that provide
domain-specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code
• Dynamic runtime coordinates access to computing resources and data

transfers across different applications

CPU GPU FPGA NVDLA SST Aladdin Tloop

MCL

TFlow RustCOMET TACO

AppApp App Applications

Domain-Specific
Language

Hardware

WIPSamba
Nova

Xilinx
Versal

PyTorch

AppApp App

mclDNN mclBLAS Libraries

April 2nd, 2022PPoPP'22 Tutorial

8

Multi-Process support

• A key distinctive features of MCL is that it supports multi-process, multi-
threaded workloads
§ Global optimization across the workload
§ Dynamic resource allocation

April 2nd, 2022PPoPP'22 Tutorial

Static Resource Allocation Dynamic Resource Allocation
App 1

App 2

Dev 1 Dev 1Dev 2 Dev 2

9

Supported Architectures

MCL works and/or can be integrated with other technologies
commonly used in HPC, Data analytics, and ML.

April 2nd, 2022PPoPP'22 Tutorial

CPU

Intel x86
AMD x86
ARM
RISC-V
IBM POWER

GPU

NIVIDIA
Intel
AMD
ARM

Accelerators

NVDLA
Xilinx FPGA

ModSim

SST
Aladdin
FPGA Emulator
zSim
other

10

Throughput for Large Computations

April 2nd, 2022PPoPP'22 Tutorial

2000 4000 6000 8000
0

100

200

300

400

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

Number of Tasks
2000 4000 6000 8000

0

2

4

6

8

S
p

e
e

d
u

p
 w

.r
.t

. O
C

L
 T

h
ro

u
g

h
p

u
t

OCL Throughput MCL Throughput MCL Speedup • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k tasks
§ 1024x1024
§ Compute-bound

Automatic scaling to 8 GPUs J

Sub-linear speedup up (6x) L
* Same programming effort, not same hardware (MCL>OCL)

11

Throughput for Small Computations

April 2nd, 2022PPoPP'22 Tutorial

2000 4000 6000 8000
0

5000

10000

15000

20000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

Number of Tasks
2000 4000 6000 8000

0

5

10

15

S
p

e
e

d
u

p
 w

.r
.t

. O
C

L
 T

h
ro

u
g

h
p

u
t

OCL Throughput MCL Throughput MCL Speedup • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k tasks
§ 64x64
§ I/O-boud (CPU-GPU) ->

most challenging case

Automatic scaling to 8 GPUs J

Super-linear speedup GPUs J

12

Application Composition

April 2nd, 2022PPoPP'22 Tutorial

0

20

40

60

80

100

120

0-8 1-7 2-6 3-5 4-4 5-3 6-2 7-1 8-0

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
e

c
o

n
d

s
)

Application distribution

OCL MCL • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ Mix of small and large kernels

(8 processes)
§ OpenCL modified for static

resource allocation
§ No modification to MCL code

Dynamic resource allocation =
faster execution J

2.5x

Increased resource
contention due to local

optimization L

Increased utilization due
to dynamic load

balancing J

All large All small

* Same hardware, not same programming effort (OCL>MCL)

13

Comparison with StarPU

April 2nd, 2022PPoPP'22 Tutorial

2000 4000 6000 8000
0

5000

10000

15000

20000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s

/s
e

c
)

Number of Tasks
2000 4000 6000 8000

0

5

10

15

20

M
C

L
 S

p
e

e
d

u
p

OpenCL StarPU MCL
Speedup wrt OpenCL Speedup wrt StarPU

• DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k tasks
§ 64x64

• Same kernel
• Similar code effort

LOC
OpenCL: 160
StarPU: 120
MCL: 60

14

System utilization

April 2nd, 2022PPoPP'22 Tutorial

• DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 16k tasks
§ 1024x1024

MCL internal tracing

Full utilization after transient
phases

Effective dynamic load balancing!

15

Publications

April 2nd, 2022PPoPP'22 Tutorial

1. R. Gioiosa, B. Mutlu, S. Lee, J. Vetter, G. Picierro, M. Cesati. 2020. The Minos Computing Library: Efficient
Parallel Programming for Extremely Heterogeneous Systems. In General Purpose Processing Using GPU
(GPGPU ’20), February 23, 2020, San Diego, CA, USA

2. G. Kestor, R. Gioiosa, M. Raugas. Towards Performance Portability through an Integrated Programming
Eco-System for Tensor Algebra. In Performance, Portability, and Productivity in HPC Forum, Virtual,
September 2020

3. A. V. Kamatar, R. D. Friese and R. Gioiosa, "Locality-Aware Scheduling for Scalable Heterogeneous
Environments," 2020 IEEE/ACM International Workshop on Runtime and Operating Systems for
Supercomputers (ROSS), GA, USA, 2020

4. Ashraf R.A., and R. Gioiosa. 2022. "Exploring the Use of Novel Accelerators in Scientific Applications."
In ICPE '22: Proceedings of the ACM/SPEC International Conference on Performance Engineering, 2022.

Thank you

16PPoPP'22 Tutorial

