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New Challenges

• New challenges
§ Emerging applications in different domains (scientific 

simulations, machine learning, data analytics, signal 
processing, etc.)

§ Unprecedented amount of data to be processed under 
strict real-time, power, and trust constraints

• Providing high-performance, scalable, and 
versatile solutions becomes a fundamental 
requirement
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More and More Specialization

• Specialization has become a fundamental pillar for the 
design of future high-end computer systems:
§ In HPC: GP-GPUs, FPGAs,…; 
§ In Military: ASICs, DSPs, …
§ Specialized hardware for machine- and deep-learning 

(Tensor Cores, NVDLA, SambaNova, Cerebras,…).

• High level of specialization results in extremely 
heterogeneous systems that are complicated to design, 
test, validate, and program
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Accelerators are only useful if they are accessible…
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A Little History…

Time

We need a reasonable path to migrate 
applications to novel architectures!
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Scaling Up and Down

Xilinx MPSoC ZynQ ZCU 102/106
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Apple MacBook Pro

Apple iMac Pro

NVIDIA DGX-1 

(P100/V100)

IBM Summit
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The Minos Computing Library (MCL)

• Framework for programming extremely heterogeneous systems
§ Programming model and programming model runtime
§ Abstract low-level architecture details from programmers
§ Dynamic scheduling of work onto available resources

• Key programming features:
§ Applications factored into tasks
§ Asynchronous execution
§ Devices are managed by the scheduler 
§ Co-schedule independent applications
§ Simplified APIs and programming model (based on OpenCL)

• Flexibility:
§ Scheduling framework
§ Multiple scheduling algorithms co-exist
§ Code portability
§ Resources allocated at the last moment
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Convergence of HPC/AI/Data Analytics

• Scientists express their algorithm with high-level DSLs that provide 
domain-specific programming abstractions

• Compiler lowers DSL code to device-specific, highly-optimized code
• Dynamic runtime coordinates access to computing resources and data 

transfers across different applications 

CPU GPU FPGA NVDLA SST Aladdin Tloop

MCL

TFlow RustCOMET TACO

AppApp App Applications

Domain-Specific 
Language

Hardware

WIPSamba
Nova

Xilinx 
Versal

PyTorch

AppApp App

mclDNN mclBLAS Libraries
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Multi-Process support

• A key distinctive features of MCL is that it supports multi-process, multi-
threaded workloads
§ Global optimization across the workload
§ Dynamic resource allocation
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Static Resource Allocation Dynamic Resource Allocation
App 1

App 2

Dev 1 Dev 1Dev 2 Dev 2
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Supported Architectures

MCL works and/or can be integrated with other technologies 
commonly used in HPC, Data analytics, and ML.
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CPU

Intel x86
AMD x86
ARM
RISC-V
IBM POWER

GPU

NIVIDIA
Intel
AMD
ARM

Accelerators

NVDLA
Xilinx FPGA

ModSim

SST
Aladdin
FPGA Emulator
zSim
other
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Throughput for Large Computations
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OCL Throughput MCL Throughput MCL Speedup • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k  tasks
§ 1024x1024
§ Compute-bound

Automatic scaling to 8 GPUs J

Sub-linear speedup up (6x) L
* Same programming effort, not same hardware (MCL>OCL)
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Throughput for Small Computations
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OCL Throughput MCL Throughput MCL Speedup • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k tasks
§ 64x64
§ I/O-boud (CPU-GPU) -> 

most challenging case

Automatic scaling to 8 GPUs J

Super-linear speedup GPUs J
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Application Composition
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Application distribution

OCL MCL • DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ Mix of small and large kernels 

(8 processes)
§ OpenCL modified for static 

resource allocation
§ No modification to MCL code

Dynamic resource allocation = 
faster execution J

2.5x

Increased resource 
contention due to local 

optimization L

Increased utilization due 
to dynamic load 

balancing J

All large All small

* Same hardware, not same programming effort (OCL>MCL)
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Comparison with StarPU
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OpenCL StarPU MCL
Speedup wrt OpenCL Speedup wrt StarPU

• DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 64-8k tasks
§ 64x64

• Same kernel
• Similar code effort

LOC
OpenCL: 160
StarPU: 120
MCL: 60
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System utilization
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• DGX-1 V100
§ 2x 20-core Intel Xeon
§ 256 GB RAM
§ 8x NVIDIA V100, 16GB

• Benchmark:
§ DGEMM kernel
§ 16k tasks
§ 1024x1024

MCL internal tracing

Full utilization after transient 
phases

Effective dynamic load balancing!
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