

MCL + Alternative Resources

PPoPP '22

Ryan Friese, Roberto Gioiosa, Alok Kamatar

PNNL is operated by Battelle for the U.S. Department of Energy

Programming Alternative Resources

- Last year we gave a tutorial on programming an Nvida Deep Learning Accelerator (NVDLA) using MCL
- This year we present programming a SambaNova SN10
- <u>https://sambanova.ai/</u>

Pacific

Northwest

- A dataflow architecture design to accelerate deep learning workloads
 - Software reconfigurable dataflow hardware
- Can accelerate both training and inference tasks
- Integrates with popular AI frameworks with little code modification
- Designed to be highly scalable

PPoPP'22 Tutorial: MCL + Alternative Resouces

pef (Plasticine Executable Format) files are compiled binaries which describe how to configure the actual dataflow hardware

Model Construction with SambaFlow

- SambaFlow is fully integrated with popular opensource frameworks
 - E.g. TensorFlow Pytorch
- Should be able to run existing models

 Intended to allow the programming model to scale from a single device to multiple devices and configurations

PPoPP'22 Tutorial: MCL + Alternative Resouces

TensorFlow

Model training and inference

- SamabaNova datascale systems are capable of accelerating both training and inference
- Both tasks require a compiled PEF binary to configure the dataflow hardware
 - Note these will be different PEF binaries

Mapping a model to Hardware

7.94

3.7

MCL – SambaNova integration

- Recall: MCL is built on top of OpenCL
- Recall: Tasks are OpenCL kernels (source code) and associated inputs/outputs
 - Compiled/executed depending on the device a task runs on
 - Devices managed by the MCL Scheduler
- SambaNova does not have an OpenCL implementation, nor does it compile directly from source
- For integration we have developed a custom POCL¹ device for the SambaNova
- Ingests YAML configuration files
 - PEF file name
 - Input name, shape, dtype
 - Outuput name, shape, dtype

Pacific

Northwest

SambaNova POCL Driver

- POCL Portable Compute Language
 - Open source implementation of OpenCL standard
- Device discovery and initialization
- Buffer/memory management
- Launches and reports finished execution of tasks
- Implemented using the OpenCL "builtin_kernel" interface
 - Specifies that the device doesn't run arbitrary OpenCL code
- Provides the connection between MCL and SambaNova Runtime
- Parses a user provided yaml file containing information on the PEF to load, inputs, and outputs

ime PEF to load,

Sample Yaml Configuration files

- Fairly simple format
- pef: path to the pef binary

- 1 pef: out/mnist/minst
 2 input:
 3 { name: image, s
 4 { name: label, s
- Input: list of input buffers to the graph/model
 - Buffer name
 - Shape
 - Data type
- Output: list of output buffers to the graph/model
 - Buffer name
 - Shape
 - Data type
- Currently only one PEF per configuration file
 - In the future will be able to define multiple per file

pef: out/mnist/minst_training.pef

- { name: image, shape: 1x784, dtype: FP32 } - { name: label, shape: 1x10, dtype: INT16 }

Stripped Down MCL Application (MNIST)

image

•

- •

We want to perform inference to predict what digit is present within an

We provide MCL with a yaml file that enables us to load a PEF binary and properly initialize a context in the SambaNova runtime

> This happens transparently for the user

Not much difference from other MCL applications!

	_
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	
9%= -0000**000000	
:%#0-#000. #000000	
+0000:*000 *00000	
+ +0000 000% 000000	
). :%00.000. *0000000	
0- =00000000000	
000%: +0- :00000000	
00000%. : -0000000000	
00000000+ #0000000000000000000000000000	
00000000+ :000000000	
00000000+ *0000000000000000000000000000	
00000000: = 00000000	
00000000 0: 00000000	
00000000 -0 000000000000000000000000000	
0000000# +0 00000000	
0000000* ++ 000000000000000000000000000	
00000000* *0000000	
0000000# =00000000000000000000000000000	
00000000. +0000000000000	
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	

I	00	90	00	00	00	00	00	00	00	90(90	00	1@(20	60
I	00	90	00	60	00	00	00	00	00	10(90	00	00	90	90
I	00	90	00	00	00	00	00	00	00	00	80	00	100	10	00
I	00	90	00	00	00	00	00	00	00	100	a@	00	00	3@	00
I	00	90	00	00	00	00	00	00	00	90(00	00	100	10	00
I	00	90	00	00	00	00	00	00	00	100	<u>a</u> @	00	00	3@	90
I	00	90	00	00	00	00	00	%.	-@	90(90	00	00	3@	00
I	00	90	00	60	60	6*			٩	60(<u>a</u> @	00	00	90	90
I	00	90	00	00	00	=			*	ŧ@(90	00	00	30	00
I	00	90	00	60	@=		00	0	*	e@(<u>a</u> @	00	00	90	90
	00	90	00	00	*	=@	00	0	٩	6@(90	00	00	90	00
I	00	90	00	60		60	60	%	0	90(<u>a</u> @	00	00	90	90
	00	90	00	@#		00	00		0	90(90	00	00	90	00
I	00	90	00	0:	0	60	@%		6	90(90	00	00	90	90
	00	90	00	0:	0	00	@-		0	90(90	00	00	90	00
I	00	90	00	0:		+*		+:	*	ŧ@(90	00	00	90	00
I	60	90	00	@*				@:	*	•@(ĝ@	00	00	90	90
	00	90	00	00	%#	**	#@	@:	*	ŧ@(90	00	0	90	<u>@@</u>
I	60	90	00	60	60	60	60	@:		-@(ĝ@	00	00	90	90
	00	90	00	00	00	00	00	@+		: @(90	00	0	90	00
I	60	90	00	60	60	60	60	@*		@(ā@	00	00	90	90
	00	90	00	00	00	00	00	00		%(90	00	0	90	00
	00	90	60	66	66	60	00	00		#(ĝ@	00	00	<u>a</u> @	90
I	00	90	00	00	00	00	00	00		+(90	00	1@(90	00
	00	90	60	66	60	00	60	60		+(ġ@	00	00	90	90
I	00	90	00	00	00	00	00	00	*:	: %(90	00	00	90	00
I	00	90	00	00	00	00	00	00	00	90(<u>a</u> @	00	00	90	90
I	00	00	00	00	00	00	00	00	00	300	90	00	100	3@	00

7 94

Thank you

