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MiniMD Application Background

• Based off LAMMPS MD code (from Sandia National Lab) -
https://github.com/Mantevo/miniMD

• Uses a spatial decomposition to break the problem over multiple processors 
(or multiple GPUs)

• Uses neighbor lists for the force calculation – reduces work, but relies on 
random memory accesses

• MCL currently only supports Lennard-Jones interactions for the simulation
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MiniMD Structure

• Composed of 6 different kernels/tasks
• MPI - Atoms are divided into different 

processes -1 process per GPU
• MCL – 1 client process

§ No need for inter-process communication

• Maintain spatial decomposition of atoms -
same number of tasks, same memory 
footprint
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MiniMD-MCL

• Advantages:
§ Kernels reused from OpenCL
§ Dynamic Scheduling – GPU allocation adapts to system use
§ Portable –Nvidia GPUs, AMD GPUs, and GPU + Xilinx FPGA
§ Ease of Use

• Disadvantages:
§ Scheduling Overhead
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Preliminaries: Resident Memory

• May need to mark certain data as “resident” to MCL
§ i.e. Multiple tasks use the same piece of data, output of 

one task is input to another, etc.
• Can mark these arguments with MCL_ARG_RESIDENT.
• MCL_ARG_DYNAMIC – pass data from task to task
• Scheduler manages transfers to correct device
• Allocation could exist till:

§ MCL_ARG_DONE flag is passed
§ mcl_unregister_buffer(void* buffer) is called

• Data my be on host, or any device based on 
scheduler and tasks
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Preliminaries: Dependencies

• New API
§ Asynchronous expression 

of dependencies
§ Quicker turn around 

between tasks

• Scheduling logic
§ Tasks are scheduled when 

all immediate 
dependencies are 
executing (but before they 
are finished)

Specify # and dependencies
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Preliminaries: Boilerplate

Function to take 
care of repetitive 
work for every 
kernel launch

Can submit 
task with one 

call
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Example: Force

Wrapper object for 
arguments

MCL_ARG_BUFFER | MCL ARG_RESIDENT | MCL_ARG_DYNAMIC

Pass around waitlist 
to manage 
dependencies
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Example: Communication
Communication:
- Gather atoms on boundary of partition
- Transfer to other partition
- Unpack atoms to proper place in 

partition

Create dependency with 
neighboring partitions

No explicit reads or writes (all managed by MCL)

MCL_ARG_BUFFER | MCL ARG_RESIDENT | MCL_ARG_DYNAMIC
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Example: Neighboring

Maintain the allocation

Copy the data in/out

Copy the data in 
(even if already on 
the device)

Delete resident data

Wait for results

Neighbor Build:
• Try to build neighbor lists
• Fails if num neighbors 

found > max neighbors
• Resize and retry on failure
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Example: Integrate

Only creates a global dependency 
when necessary

Data is only output when bins need to be 
recalculated

Integrate:
• Step through time calculating position, 

force, and velocity
• Launch calculations for all partitions 

asynchronously
• Every ~20 timesteps, recalculate the 

partitions of the atoms
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Demo
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