
Programming 
MiniMD with 

MCL

Alok Kamatar, Rizwan Ashraf, Ryan Friese, 

Roberto Gioiosa, Lenny Guo, Gokcen Kestor

PPoPP ‘22



2

MiniMD Application Background

• Based off LAMMPS MD code (from Sandia National Lab) -
https://github.com/Mantevo/miniMD

• Uses a spatial decomposition to break the problem over multiple processors 
(or multiple GPUs)

• Uses neighbor lists for the force calculation – reduces work, but relies on 
random memory accesses

• MCL currently only supports Lennard-Jones interactions for the simulation

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL

https://github.com/Mantevo/miniMD


3

MiniMD Structure

• Composed of 6 different kernels/tasks
• MPI - Atoms are divided into different 

processes -1 process per GPU
• MCL – 1 client process

§ No need for inter-process communication

• Maintain spatial decomposition of atoms -
same number of tasks, same memory 
footprint

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



4

MiniMD-MCL

• Advantages:
§ Kernels reused from OpenCL
§ Dynamic Scheduling – GPU allocation adapts to system use
§ Portable –Nvidia GPUs, AMD GPUs, and GPU + Xilinx FPGA
§ Ease of Use

• Disadvantages:
§ Scheduling Overhead

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



5

Preliminaries: Resident Memory

• May need to mark certain data as “resident” to MCL
§ i.e. Multiple tasks use the same piece of data, output of 

one task is input to another, etc.
• Can mark these arguments with MCL_ARG_RESIDENT.
• MCL_ARG_DYNAMIC – pass data from task to task
• Scheduler manages transfers to correct device
• Allocation could exist till:

§ MCL_ARG_DONE flag is passed
§ mcl_unregister_buffer(void* buffer) is called

• Data my be on host, or any device based on 
scheduler and tasks

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



6

Preliminaries: Dependencies

• New API
§ Asynchronous expression 

of dependencies
§ Quicker turn around 

between tasks

• Scheduling logic
§ Tasks are scheduled when 

all immediate 
dependencies are 
executing (but before they 
are finished)

Specify # and dependencies

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



7

Preliminaries: Boilerplate

Function to take 
care of repetitive 
work for every 
kernel launch

Can submit 
task with one 

call

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



8

Example: Force

Wrapper object for 
arguments

MCL_ARG_BUFFER | MCL ARG_RESIDENT | MCL_ARG_DYNAMIC

Pass around waitlist 
to manage 
dependencies

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



9

Example: Communication
Communication:
- Gather atoms on boundary of partition
- Transfer to other partition
- Unpack atoms to proper place in 

partition

Create dependency with 
neighboring partitions

No explicit reads or writes (all managed by MCL)

MCL_ARG_BUFFER | MCL ARG_RESIDENT | MCL_ARG_DYNAMIC

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL

Each partition 
corresponds to a portion 
of the total number of 
atoms.



10

Example: Neighboring

Maintain the allocation

Copy the data in/out

Copy the data in 
(even if already on 
the device)

Delete resident data

Wait for results

Neighbor Build:
• Try to build neighbor lists
• Fails if num neighbors 

found > max neighbors
• Resize and retry on failure

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



11

Example: Integrate

Only creates a global dependency 
when necessary

Data is only output when bins need to be 
recalculated

Integrate:
• Step through time calculating position, 

force, and velocity
• Launch calculations for all partitions 

asynchronously
• Every ~20 timesteps, recalculate the 

partitions of the atoms

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



12

Demo

April 2, 2022PPoPP '22 Tutorial: MiniMD MCL



Thank you

13PPoPP '22 Tutorial: MiniMD MCL


