
MCL + Rust

Ryan Friese, Roberto Gioiosa, Alok Kamatar

PPoPP ‘22

2

RUST High Level Overview

3

Why Rust?

Reliability
• Memory safety
• Thread safety
• Strong compile-time guarantees

Performance
• No garbage collector
• Zero-cost abstractions
• No runtime required

Productivity
• Cargo build tool/package manager
• Verbose and helpful compiler errors
• rustfmt

Rust is a modern systems programing language that is an alternative to C and C++.
It prioritizes reliability, performance, and productivity.

“Fearless Concurrency!”

4

Rust Memory Model

Rust’s memory model is inspired by Cyclone:

Cyclone: a Type-safe Dialect of C. Dan Grossman, Michael Hicks, Trevor Jim,
and Greg Morrisett. C/C++ Users Journal, 23(1), January 2005.

http://www.cs.umd.edu/~mwh/papers/cyclone-cuj.pdf

Cyclone introduced the idea of a region-based type system, which in Rust is expressed
through what is known as a borrow-checker.

Variables are immutable by default, and have lifetimes that are scoped by memory regions
(typically, blocks of code such as functions).

We need to borrow ownership of a variable if we are to access it outside of its defining
scope and explicitly declare values as mutable if we wish to change them.

5

Rust RAII

Rust enforces RAII (Resource Acquisition Is Initialization).

Whenever an object goes out of scope, its destructor is called, and its owned resources are
freed.

Allows us to automate aspects of memory management at compile-time, without explicit calls
to free() or using a Garbage Collector (GC).

This reduces wide classes of memory faults that are caught at compile time (double free, use
after free, resource leaks) while preserving performance (no stop the world GC).

Variable assignment has move semantics, unless primitive values have known size (e.g.,
fixed # of words) and defaults to stack allocation.

6

Ownership Rules

• Each value in Rust has a variable that’s called its owner.
• There can only be one owner at a time.
• When the owner goes out of scope, the value will be dropped (destructor is called, owned

resources freed).

error[E0382]: use of moved value: `s1`
--> src/main.rs:5:28
|

3 | let s2 = s1;
| -- value moved here

4 |
5 | println!("{}, world!", s1);
| ^^ value used

here after move
|
= note: move occurs because `s1` has type

`std::string::String`, which does
not implement the `Copy` trait

let s1 = String::from("hello");
let s2 = s1;
println!("{}, world!", s1);

7

Rust Type System

Rust is:
• Strongly typed.
• Statically typed.
• With type inference.

Some types available include:

• Scalar types (e.g., integer, floating point, Boolean)
• Compound types (e.g., tuples, arrays)
• Enums (similar to algebraic data types (ADTs) from Ocaml, Haskell)
• Standard Collections (Vector, HashMap, etc.).
• Smart Pointers

8

References and Borrowing

Default parameter use in function call by value:

• A function F takes ownership of values placed in its call stack:
§ F will copy the value if its size is statically allocated.
§ F will move the value if it is size is dynamically allocated.

• If moved, the value will:
§ Go out of scope at the end of the called function.
§ Be automatically deallocated.

9

References and Borrowing

This is memory safe, but not always convenient.

• We can refer to a value val by using the syntax &val without taking ownership
of it.

• This allows the function argument value to stay in scope after the function
returns.

• References are immutable by default.
• Explicit mutable references (&mut val) are allowed if we want to alter the

value in the new scope.
§ Compiler ensures there is only one mutable reference to a variable at any given time
§ Unless explicitly marked as a “sync” data structure (e.g. Atomic Integers)

10

Rust Structs
Rust structs are named tuples:

struct ActiveMessage {

source_locale: u64,
dest_locale: u64,
data: Vec<u64>,
one_sided : bool,

}

11

Rust Enums

Similar to algebraic data types (ADTS) from Ocaml or Haskell:
• enum ConduitKind {

IBV,
OFI,
UGNI,

}

fn send(conduit_type: ConduitKind, data: [u64]) {

match type {
ConduitKind::IBV => send_ibv(data),
ConduitKind::OFI => send_ofi(data),
ConduitKind::UGNI => send_ugni(data),
_ => (),

}
}

• Matches are exhaustive, so all cases of the defining enum need to be covered.
• The _ operator is a catch-all.

12

Rust Traits
• Traits are (if you squint) similar to type classes in Haskell

or Interfaces in Java and Go
• Allows for default method implementations.

§ Attached to the trait itself.

• Allows for generic programming.
§ Implementations may specialize behavior

• By default, Rust monomorphizes called instances of generic functions at
compile time for static dispatch.

§ Can result in larger binaries
§ Dynamic dispatch is available but impacts performance (i.e., vtable)

• Rust trait objects are similar to C++ classes, but:
§ Not possible to derive functionality through inheritance, only through implementation

• Composition Over Inheritance OOP design principle.
§ No multiple inheritance. . . But a data object can impl many traits
§ Rust structs can not inherit other structs

13

Rust Traits

enum Option<T> {
Some(T),
None,

}

pub trait Ordered {
fn greater(&self, &other) -> u64;

}

fn largest<T: Ordered>(list: &[T]) -> T {
let mut largest = list[0];
for &item in list.iter() {

if item.greater(&largest) {
largest = item;

}
}
largest

}

<T> is a placeholder for
a generic trait.

<T: Ordered> means the
generic must implement
Ordered. This is called a
trait bound

• There exist a subset of Traits that are so common, the language provides a
mechanism to automatically derive default implementations at compile time

• This is accomplished by preceding your data structure declaration with the
#[derive(…)] macro

• Derivable traits:
§ Debug – debug formatting for printing
§ PartialEq, Eq – equality comparisons
§ ParialOrd, Ord – ordering comparisons
§ Clone,Copy – duplicating data
§ Hash – mapping to value of fixed size
§ Default – default values

• 3rd party crates also introduce their
own derivable traits

§ e.g. #[derive(serde::serialize)]

• It is always possible to manually derive any of these traits based on your use case

14

Rust Traits – Deriving functionality

#[derive(Clone,Debug,Hash)]
enum Cmd {

Send,
Recv,

}

#[derive(Clone,Debug)]
struct Packet<T> {

cmd: Cmd
msg: &str
payload: T

}

<T> in this case must
also impl Clone and
Debug, otherwise we will
get a compiler error

15

Rust Macros
• Macros are a significant part of the Rust language

§ We just saw a very useful Macro on the previous slide #[derive]
§ Even the simplest “Hello, World” application uses a macro

• Macros at their heart are a way of writing code
that writes other code

• Macros vs Functions (high level)
§ Function signatures must declare the number and type of parameters
§ Macros can take a variable number of parameters

ü Macros are evaluated (expanded) before compiler begins

• Two types of Macros
§ Declarative macros (macro_rules!) – essentially perform pattern matching and

replacement
§ Procedural macros – more function like: accepts code, dynamically operates

on/transforms code (you have access to AST), produce new code
• Macro implementation can be difficult to develop, read, and maintain

fn main{
println!(“Hello, world”);

}

This is a macro!

fn main{
println!(“Hello {}”, “world”);

}

2 arguments

1 argument

16

Additional Features

• Associated Types are type placeholders within a trait definition.
§ Allow the implementation to specify the concretized type value.
§ For example:

• .next() method definition in an Iterator trait.
• Operator Overloading (+,-, …)

• Closures are lambda expressions (anonymous functions) that capture the
enclosing environment.
§ Closures can be saved in a variable
§ Closures can be passed as arguments to other functions.

• Smart Pointers to force:
§ Heap Allocation
§ Explicit reference counting (and thread safe atomic versions)
§ Runtime borrow checking
§ Explicit deferencing (destructor-like behavior).

17

Closures and Iterators

Closures are lambda expressions allow us to define anonymous functions that capture the
enclosing environment. We can then save the closure in a variable or pass it as arguments
to other functions:

let square_x = |x| { x * x }

let accum_x = | x , a | { x + a }

18

Higher Order Functions (HOFs)

HOFs take one or more functions as arguments. Combining with lazy iterators gives a
somewhat functional flavor:

fn is_odd(n: u32) -> bool {
n % 2 == 1

}

let sum_of_squared_odd_numbers: u32 =
(0..).map(|n| n * n) // All natural numbers squared

.take_while(|&n_squared| n_squared < upper) // Below upper limit

.filter(|&n_squared| is_odd(n_squared)) // That are odd

.sum(); // Sum them

19

Rust Error Handling
Rust enforces error handle (or at least explicit acknowledgement you are ignoring an error)

enum Result<T, E> { Ok(T), Err(E), }

use std::fs::File;

fn main() {
let f = File::open("hello.txt");
let f = f.unwrap(); //MINIMUM – ignore an error may happen, panics with generic message
let f = f.expect(“error better opening file"); //BETTER – panics with custom error message
let f = match f {

Ok(file) => file,
Err(error) => { // BEST – explicitly handle/recover

panic!("There was a problem opening // from an error or at lease provide
the file: {:?}", error) // more detailed error message on panic

},
};

}

20

Rust Concurrency

Rust has support for message passing inspired by golang via a multiple producer single
consumer (mpsc) model standard library feature.

use std::thread; //explicit OS level thread (e.g. pthreads)
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();
thread::spawn(move || {

let val = String::from("hi");
tx.send(val).unwrap();

}
);

}

The move keyword moves tx
into the spawned thread.

Async/await design pattern for futures is also available in the standard library
Somewhat similar to green threads or user level threads

21

Rust Build Environment: Cargo

• Cargo is the build tool for Rust.
• Provides a canonical package layout and manifest.
• Includes robust dependency management

§ Download/resolution of libraries
§ Compilation of dependencies
§ Environment support (debug/release, benchmarks, integration tests)

• Integration of foreign code with a Rust project requires leveraging and working
within the conventions of the Cargo package manager
§ There is built-in support to do this. . .
§ And there are convenience crates (libraries) such as CC

22

Cargo Structure
.

├── Cargo.lock

├── Cargo.toml

├── benches

│ └── large-input.rs

├── examples

│ └── simple.rs

├── src

│ ├── bin

│ │ └── another_executable.rs

│ ├── lib.rs

│ └── main.rs

└── tests

└── some-integration-tests.rs

• Cargo.toml and Cargo.lock are stored in
the root of your package (package root).

• Source code goes in the src directory.
§ The default library file is src/lib.rs.
§ The default executable file is src/main.rs.

• Integration tests go in the tests directory
§ Unit tests go in each file they're testing.

• Benchmarks go in the benches directory.

23

Cargo Basics

• To start a new project:

cargo new [--library] my_project

• The Cargo.toml file lists the top-level dependencies of an existing project.

• Allows for external libraries, version pinning, etc.
• The Cargo.lock file captures the exact environment used for a build

• To build a project:

cargo build [--release]

• Dependencies will be downloaded, built, linked, etc. . .

24

MCL + Rust

25

C – Rust FFI

• What is an FFI?
§ Foreign function interface – the mechanism in which a program in one language can

call routines and service written in another

• But… Rust is a “safe” language… C… isn’t…
§ Unfortunately, this is true, once a rust program calls into a C library all safety

guarantees are off

• So why have a Rust interface?
§ We can limit the “unsafe” code to only the C library itself

ü In an ideal world the library is completely bug free…
§ User level code benefits from all the features of Rust

• Great.. But can’t you just port the C library to Rust?
§ Yup! And some libraries have certainly done that (time + money…)
§ But at some level you will eventually need to call in to a C library (e.g. libc)

ü Unless you use a Rust OS (these are very young)

26

Rust “sys” Crates

• The idiomatic way to implement a C library FFI is via a “sys” crate
§ For MCL we have implemented “libmcl-sys”

• At a high level this is simply a mapping of the C types and the Rust types of
the public interfaces in the library
§ E.g

• The Rust Bindgen assists in automatically generating most of these bindings
• The resultant “sys” crate provides unsafe Rust compatible interfaces
• It also appropriately links the library so it can be used in any other Rust app
• It is common for developers to also a safe interface for the library using the

“sys” crate as a dependency

extern "C" {
#[doc = " @brief Initialize MCL"]
#[doc = ""]
#[doc = " @param num_workers Number of …"]
#[doc = " @param flags Unimplemented"]
#[doc = " @return int 0 on success, non-zero otherwise"]
pub fn mcl_init(num_workers: u64, flags: u64) -> ::std::os::raw::c_int;

}

/**
* @brief Initialize MCL
*
* @param num_workers Number of …
* @param flags Unimplemented
* @return int 0 on success, non-zero otherwise
*/
int mcl_init(uint64_t num_workers, uint64_t flags);

27

MCL + Rust

• We have implemented two crates to enable MCL programming in Rust
§ libmcl-sys – the low-level unsafe Rust-C bindings

ü Not really intended for direct user interaction
§ mcl-rs – high level safe abstractions

ü Fits into the Domain-Specific
language layer in the MCL stack

ü We want to program at this layer!

MCL

CPU GPU FPGA Sambnova

TFlow COMET …

…

libmcl-sys

mcl-rs

App 1 App 2 App 3 App 4 Applications

Domain-Specific
Language

Hardware

28

Enough talk… lets see some code!
• Lets start with a simple mcl-rs “vector_add” – our version of “hello world”
• Step 0 – install Rust –
• Step 1 – create a new Rust project

§ Step 1.5 lets see what happened
ü Lets peek in main.rs
ü Everything we need to build and

execute a Rust app!

• Step 2 – lets build it!

• Step 3 – lets run it!

$ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

$ cargo new vector_add --bin
$ cd vector_add
vector_add$ tree .
.
├── Cargo.toml
└── src

└── main.rs

1 directory, 2 files

fn main() {
println!("Hello, world!");

}

vector_add$ cargo build
Compiling vector_add v0.1.0 (/…/vector_add)
Finished dev [unoptimized + debuginfo] target(s) in 1.19s

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.03s
Running `target/debug/vector_add`

Hello, world!

29

What about MCL?
• Step 4 – include “mcl-rs” as a

dependency for our App
§ Open “Cargo.toml”
§ Add mcl-rs=0.1 to dependency section

• Step 5 – make sure we can build with mcl-rs
§ Cargo automatically downloads our declared dependencies

and all “inherited dependencies
§ Uhh ohh!!!
§ Depending on your system this error may not have happened (OCL was found)
§ Let try again with env vars set to proper locations
§ Dang it!
§ One last time setting the MCL_PATH

//Cargo.toml
[package]
name = “vector_add"
version = "0.1.0"
edition = "2021"
[dependencies]
mcl-rs = "0.1.2”

vector_add$ cargo build
Updating crates.io index
Compiling libc v0.2.121
Compiling autocfg v1.1.0
…

error: failed to run custom build command for `libmcl-sys v0.1.0`
Please set the paths to OpenCL: env variables OCL_PATH_INC, OCL_PATH_LIB

Vector_add$ export OCL_PATH_INC=${..} && export OCL_PATH_LIB={…}
vector_add$ cargo build

error: failed to run custom build command for `libmcl-sys v0.1.0`
MCL_PATH environmental variable is not set …

vector_add$ MCL_PATH=${mcl_install_path} cargo build
Compiling libmcl-sys v0.1.0
Compiling mcl-rs v0.1.0
Compiling vector_add v0.1.0

Finished dev [unoptimized + debuginfo] target(s) in 4.88s

SUCCESS!

30

Now we can actually do MCL code
• Step 6 – add vadd.cl to the

src folder
• Step 7 – lets update main.rs

§ 7.1 – include the mcl-rs module
§ 7.2 – initialize mcl

ü Builders are a common Rust design pattern
ü No need for explicit “finit” mcl-rs handles automatically

§ 7.3 – lets test everything is working
ü Cargo does a lot… but it struggles

embedding paths to dynamic libraries
ü Ensure LD_LIBRARY_PATH contain your MCL lib path (and OpenCL)
ü And again…

• So close, but we forgot to
start “mcl_sched”

__kernel void VADD (__global int* out, __global int* x, __global int* y)
{

const int i = get_global_id(0);
out[i] = x[i] + y[i];

}

use mcl_rs; //7.1 imports the module

fn main() {
let mcl = rust_rs::MclEnvBuilder::new()

.num_workers(workers) //number of threads

.initialize();
} //mcl is “dropped” here

vector_add$ cargo run
error: while loading shared libraries: libmcl.so.0: cannot open shared object file

vector_add$ cargo run
[MCL ERR][…/src/lib/core.c 554] Error opening shared memory object mcl_shm.
shm_open: No such file or directory
[MCL ERR][…/src/lib/api.c 322] Error setting up MCL library. Aborting.
thread 'main' panicked at 'Error -1. Could not initialize MCL’, …/mcl-rs/src/lib.rs:1836:17vector_add$ path/to/mcl_sched &

vector_add$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.19s

Running `target/debug/vector_add` No errors!

31

Implementing Vector Add

• First let’s implement
a sequential version
on the CPU

• Build and run to check

use mcl_rs; //imports the module

fn add_seq(x: &[i32], y: &[i32], z: &mut [i32]) {// z must be declared as
for i in 0..z.len(){ // mutable so we can update

z[i] = x[i] + y[i];
}

}

fn main() {
let _mcl = mcl_rs::MclEnvBuilder::new()
.num_workers(1)
.initialize();

let vec_size = 10;

let x: Vec::<i32> = (0..vec_size).map(|_| 1).collect(); //vector of ones
let y: Vec::<i32> = (0..vec_size).map(|_| 2).collect(); //vector of twos

let mut z = vec![0; vec_size]; //the compiler will infer the correct type

add_seq(&x, &y, &mut z); // a ref of a Vec<T> coerces into a slice &[T]
println!("z= {:?}",z);

}

vector_add$ vector_add$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 1.12s

Running `target/debug/vector_add`
z= [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

32

Implementing MCL Vector Add

• Now for the good part!
• MCL + Rust!
• We use our “mcl” object

to create and execute
a task

• This should look
somewhat familiar

• Lets run it!

use mcl_rs::{TaskArg,DevType}; //specific structs
we will use

fn main() {
…
//all the code from previous slide

let vec_size = 10;
let mut z_mcl = vec![0; vec_size];

let global_work_dims= [vec_size as u64,1,1];

//create and execute an MCL task
mcl.task("src/vadd.cl", "VADD", 3)
.arg(TaskArg::output_slice(&mut z_mcl))
.arg(TaskArg::input_slice(&x))
.arg(TaskArg::input_slice(&y))
.dev(DevType::ANY)
.exec(global_work_dims)
.wait();
println!("z_mcl= {:?}",z_mcl);
assert_eq!(z, z_mcl);

}

vector_add$ vector_add$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 1.12s

Running `target/debug/vector_add`
z= [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
z=mcl= [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

__kernel void VADD (__global int* out, __global int* x, __global int* y)
{

const int i = get_global_id(0);
out[i] = x[i] + y[i];

}

Path to *.cl file, Kernel Name, Num Arguments

Equivalent to calling mcl_task_set_arg with
MCL_ARG_OUTPUT|MCL_ARG_BUFFER flags

Equivalent to calling mcl_task_set_arg with
MCL_ARG_INPUT|MCL_ARG_BUFFER flags

Equivalent to the MCL_TASK_ANY flag

Synchronous execution

33

How about async?

• Really no different, we just don’t
immediately wait on the handle

• I hear Rust has really nice async/await
functionality… do you support it?
§ Rust does have nice async/await!
§ Not yet... but we will in a
future (no pun intended)
release

fn add_mcl(mcl: &mcl_rs::Mcl, x: &[i32], y:
&[i32], z: &mut [i32], reps: usize, sync: bool) {

let size = z.len() as u64;

let global_work_dims: [u64; 3] = [size as u64,
1, 1];

let hdls = (0..reps).filter_map(|_| {
let hdl =mcl.task("src/vadd.cl", "VADD",

3)
.arg(TaskArg::output_slice(z))
.arg(TaskArg::input_slice(x))
.arg(TaskArg::input_slice(y))
.dev(DevType::ANY)
.exec(global_work_dims.clone());

if sync{
hdl.wait();
None

} else{
Some(hdl)

}
}
).collect::<Vec::<TaskHandle>>();

//hdls is only used if sync is false
for hdl in hdls{

hdl.wait();
}

}

Synchronous
Wait now

Asynchronous
Wait later

34

Testing the final version!

• Performing some simple timing
of our different approaches

• Both MCL are faster!
§ Running on a GPU

• Async faster than Sync
§ As expected!

fn main() {
let mcl = mcl_rs::MclEnvBuilder::new().num_workers(10).initialize();

let vec_size = 1000000;

let x: Vec<i32> = (0..vec_size).map(|_| 1).collect(); //vector of ones
let y: Vec<i32> = (0..vec_size).map(|_| 2).collect(); //vector of twos
let mut z = vec![0; vec_size]; //the compiler will infer the correct type
let mut z_mcl_sync = vec![0; vec_size]; //the compiler will infer the correct type
let mut z_mcl_async = vec![0; vec_size]; //the compiler will infer the correct type

let reps = 1000;

let mut timer = Instant::now();
for _i in 0..reps {

add_seq(&x, &y, &mut z);
}
println!("seq time: {} z[0..10] = {:?} ",timer.elapsed().as_secs_f64(),&z[0..10]);

timer = Instant::now();
add_mcl(&mcl, &x, &y, &mut z_mcl_sync,reps, true);
println!("mcl sync time: {} z[0..10] = {:?} ",timer.elapsed().as_secs_f64(),&z[0..10]);

timer = Instant::now();
add_mcl(&mcl, &x, &y, &mut z_mcl_async,reps, false);
println!("mcl async time: {} z[0..10] = {:?} ",timer.elapsed().as_secs_f64(),&z[0..10]);

}

vector_add$ vector_add$ cargo run
Compiling vector_add v0.1.0
Finished dev [unoptimized + debuginfo] target(s) in 1.22s
Running `target/debug/vector_add`
seq time: 28.968750326 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl sync time: 8.169609996 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl async time: 5.779657659 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

• I keep seeing “unoptimized”
and “target/debug” everytime
I compile and run…

• By default cargo builds in debug
mode with limited optimizations

• We can build in “release” mode to enable optimizations
(at the expense of compile time)
§ In some cases this can be and order of magnitude longer…

vector_add$ vector_add$ cargo run --release
Compiling vector_add v0.1.0
Finished release [optimized] target(s) in 4.04s
Running `target/release/vector_add`
seq time: 0.814003001 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl sync time: 7.938727178 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl async time: 5.619023865 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

35

But wait…

vector_add$ vector_add$ cargo run
Compiling vector_add v0.1.0
Finished dev [unoptimized + debuginfo] target(s) in 1.22s
Running `target/debug/vector_add`
seq time: 28.968750326 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl sync time: 8.169609996 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
mcl async time: 5.779657659 z[0..10] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3]

Utilizing CPU SIMD
instructions + no data

movement

36

TL;DR Recap MCL + Rust

• Add “mcl-rs” to dependency section of Cargo.toml file
• Set env vars

§ OCL_INC_PATH: OpenCL include directory
§ OCL_LIB_PATH: OpenCL lib directory
§ MCL_PATH: Mcl install directory (contains include & lib)
§ Ensure $OCL_LIB_PATH and $MCL_PATH/lib are in the LD_LIBRARY_PATH

• Launch mcl_schec: $MCL_PATH/bin/mcl_sched
• Build “cargo build [--release]” or
• Run “cargo run [--release]”

37

Thank you!
Our Rust code is hosted in our main MCL GitHub repository
https://github.com/pnnl/mcl
libmcl-sys and mcl-rs are available on crates.io
https://crates.io/crates/libmcl-sys
https://crates.io/crates/mcl-rs
Documentation is available at:
https://docs.rs/libmcl-sys
https://docs.rs/mcl-rs

Please feel free to reach out if you are interested in MCL/Rust
ryan.friese@pnnl.gov

https://github.com/pnnl/mcl
https://crates.io/crates/libmcl-sys
https://crates.io/crates/mcl-rs
https://docs.rs/libmcl-sys
https://docs.rs/mcl-rs

Thank you

38

39

BACKUP MATERIAL

40

Reference Lifetimes
Each reference has a lifetime, which usually can be elided.

Lifetimes can be made explicit with lifetime traits: <‘a>

• Can be subtyped to specify relationship between lifetimes: one lifetime
can explicitly be made to outlive another.

• Can be given bounds: help verify references in generic types will not outlive
the data they refer to.

• Can be inferred with traits.

This is useful when fighting the borrow checker…
struct Ref<'a, T>(&'a T);
struct Ref<'a, T: 'a>(&'a T);
struct StaticRef<T: 'static>

(&'static T);

T must live as long as 'a
T and its referents must live for
the entire program.

41

Associated Types
A type placeholder can be associated with a trait, whose concrete type will be specified in an
implementation:

pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

}

impl Iterator for Counter {
type Item = u32;
fn next(&mut self) -> Option<Self::Item> {
. . .
}

}

trait Add<RHS=Self> {
type Output;
fn add(self, rhs: RHS) -> Self::Output;

}

Operator Overloading works this way…

42

Smart Pointers

enum List {
Cons(i32,
Box<List>),
Nil,

}
use crate::List::{Cons,
Nil};

use std::ops::Deref;

impl<T> Deref for FooBox<T>
{

type Target = T;

fn deref(&self) -> &T {
&self.0

}
}

• Heap allocators: Box<T> Allows for recursive
data types.

• Reference counting pointers: Rc<T>
• Runtime borrow checking: Ref<T>, RefMut<T>
• Dereference operator * and custom Deref trait

impls.

43

Cargo Basics

$ cargo help
Rust's package manager

USAGE:
cargo [OPTIONS] [SUBCOMMAND]

OPTIONS:
-V, --version Print version info and exit

--list List installed commands
--explain <CODE> Run `rustc --explain CODE`

-v, --verbose Use verbose output (-vv very verbose/build.rs output)
-q, --quiet No output printed to stdout

--color <WHEN> Coloring: auto, always, never
--frozen Require Cargo.lock and cache are up to date
--locked Require Cargo.lock is up to date

-Z <FLAG>... Unstable (nightly-only) flags to Cargo, see 'cargo -Z help'
for details

-h, --help Prints help information

44

Cargo Basics

Some common cargo commands are (see all commands with --list):
build Compile the current package
check Analyze the current package and report errors, but don't build object

files
clean Remove the target directory
doc Build this package's and its dependencies' documentation
new Create a new cargo package
init Create a new cargo package in an existing directory
run Run a binary or example of the local package
test Run the tests
bench Run the benchmarks
update Update dependencies listed in Cargo.lock
search Search registry for crates
publish Package and upload this package to the registry
install Install a Rust binary. Default location is $HOME/.cargo/bin
uninstall Uninstall a Rust binary

See 'cargo help <command>' for more information on a specific command.

45

Rust Error Handling

This code pattern winds up being boilerplate often enough that an unwrap and expect
convenience methods are provided in the Result type:

use std::fs::File;

fn main() {
let f = File::open("hello.txt").unwrap();

}

fn main() {
let f = File::open("hello.txt").expect(

("Failed to open hello.txt");
}

46

Rust Error Handling

Errors can be propagated explicitly or via the ? operator:
use std::io;
use std::io::Read;

use std::fs::File;

fn read_username_from_file() -> Result<String, io::Error> {
let mut s = String::new();
File::open("hello.txt")?.read_to_string(&mut s)?;
Ok(s)

}

This function will short-circuit return if error condition occurs
on lines terminated with ? and will return Ok(s) otherwise.

